SRP981 Pneumatic Positioner

The SRP981 Positioner is for operation of pneumatic valve actuators with pneumatic control signals. It is used to reduce the adverse effects of valve friction, for higher thrust and shorter positioning time.

FEATURES

- Independent adjustment of stroke range and zero
- Adjustable amplification and damping
- Split range up to 4 -fold possible
- Supply pressure up to 6 bar (90 psig)
- Low vibration effect in all directions
- Mounting according to IEC 534, part 6 (NAMUR)
- Rotation adapter for angles up to 120°
- Certificate No. 90/20226(E2) Lloyd's Register of Shipping for use on vessels
- Modular system of additional equipment
- Electrical limit switches
- Electrical position transmitter
- Booster
- Connection manifold

CONTENTS

CHP. CONTENTS PAGE
1 GENERAL 3
1.1 Identification 3
1.2 Method of operation 4
1.3 Additional equipment 5
2 MOUNTING 6
2.1 Dimensions 6
2.1.1 Positioner 6
2.1.2 Options 6
Built-in limit switch, Model Code R, T, U, VPosition transmitter, Model Code W
2.1.3 Additional parts. 7
Booster relays, Connection manifolds, Connection manifolds with gauges2.2 Attachment to diaphragm actuatorsaccording to IEC 534-6 (NAMUR)8
2.2.1 Dimensions 8
2.2.2 Determining the mounting side. 9
2.2.3 Attachment to diaphragm actuators 9
2.3 Attachment kit for rotary actuators 10
2.3.1 Dimensions 10
2.3.2 Attachment to rotary actuators 11
2.3.3 Reversing the direction of rotation 12
3 ELECTRICAL CONNECTIONS (of options) 13
3.1 Limit switches 13
3.2 Position transmitter 4-20 mA 13
3.2.1 Direct power supply 13
3.2.2 Supply with Power Supply Unit. 13
4 COMMISSIONING 14
4.1 Setting the amplification 14
4.2 Setting of zero and stroke 14
4.3 Setting the damping 15
4.4 Subdivision of the input range (split range) 15
4.5 Determining of the rotation angle factor $\mathrm{U} \varphi$ 15
4.6 Determination of the stroke factor U_{x} 16
4.6.1 Stroke factor ranges of the range springs 16
4.6.2 Characteristics of the range springs. 17
4.7 Manual bypass switch 17
5 MAINTENANCE 18
5.1 Basic adjustment of the single acting positioner 18
5.2 Basic adjustment of the double acting positioner 19
5.3 Cleaning the throttle 20
6 REPLACING SUBASSEMBLIES 20
6.1 Replacing the amplifier 20
6.2 Replacing the amplifier diaphragm in the single acting positioner 21
6.3 Replacing the amplifier diaphragm in the double acting positioner 22
CHP. CONTENTS PAGE
7 Option "Built-in limit switch" 23
7.1 Method of operation 23
7.2 Electrical connections. 23
7.3 Arrangement of connection 23
7.4 Commissioning. 23
7.5 Adjusting the switching points 24
7.6 Maintenance 24
7.7 Safety requirements 24
7.8 Subsequent installation or exchange 25
8 Option "El. Position transmitter" 26
8.1. Method of operation 26
8.2 Electrical connections. 26
8.3 Arrangement of connection 26
8.4 Maintenance 26
8.5 Adjusting the measuring range 27
8.6 Conversion from normal direction of action in reverse direction of action 27
8.7 Subsequent installation or exchange 28
9 SAFETY REQUIREMENTS 29
9.1 Accident prevention 29
9.2 Electrical safety 29
9.2.1 General requirements. 29
9.2.2 Connection requirements 29
9.2.3 Explosion protection 29
9.2.4 EMV and CE 29
10 TROUBLE SHOOTING 30

1 GENERAL

The pneumatic positioner is used for the actuation of pneumatic actuators by means of pneumatic controllers with a continuous output of 0.2-1 bar or 3-15 psi or split ranges.
The positioner and actuator form a control loop with the command variable w_{s} (output signal y of the master controller), the correcting variable y_{s} and the linear position x_{s} of the actuator.

In this manner disturbances such as gland friction and medium forces are compensated.

In addition the positioning force of the actuator is increased by means of an output pressure of max. 6 bar.

The pneumatic positioner can be mounted on both diaphragm actuators and rotary actuators.

For actuators with spring resetting a single acting positioner is used, for actuators without spring resetting a double acting positioner is used.

The double acting positioner operates with two opposing control pressures.

Fig. 1: Control circuit with single acting positioner

1.1 Identification

Nameplate
Example:
Single acting positioner

Example:
Double acting positioner

1.2 Method of operation

Fig. 4: Single acting positioner with additional booster 52
The positioner functions in accordance with the force balance principle:
The inputsignal w (0.2 ... 1 bar) acts on the input diaphragm $70^{1)}$. The stroke of the input diaphragm is transferred to the flapper lever 35 . The resulting axial variation of the nozzle 36 and the flapper 37 varies the dynamic pressure at the nozzle. In the single acting positioner, this pressure acts on an amplifier 40 , the output pressure y of which causes a linear movement in a diaphragm actuator without spring resetting ${ }^{2)}$.
In the case of the double acting positioner this pressure acts on a dual amplifier 41, the opposed output pressures y1 and y2 of which cause a linear movement in a diaphragm actuator without spring resetting. This linear movement is picked up from the actuator spindle 16 by means of the feedback lever 9 of the positioner and transferred to the stroke factor lever 31.

Fig. 5: Double acting positioner
The stroke factor lever 31 is connected to the flapper lever 35 by means of a range spring 34 .
A force balance is created on the flapper lever 35 when the torque generated at the input diaphragm 70 coincides with the countertorque produced on the range spring 34 by the linear position. This ensures that the actuating position is always proportional to the input signal.
Dynamic matching of the actuator (sensitivity, stability) is possible by means of the throtting screw 42 and the damping throttles 44 , or 44 and 45 in the case of the double acting positioner. The stroke range and zero are set by means of the zero screw 32 and the stroke factor screw 33.

The changeover plate 50 is used in the case of the single acting positioner to set either an increasing or decreasing control pressure for an increasing input signal.

[^0]
1.3 Additional equipment

Single acting pneumatic positioners can be supplied with two built-in gauges for displaying the command variable 10 (input) and correcting variable 11 (output).
The air output capacity can be significantly increased by means of additional single acting and double acting boosters 52 ; the positioning time is thereby shortened to between one quarter and one seventh.
A bypass switch 51 can only be installed with single acting positioners.

Fig. 6: Single acting pneumatic positioner with built-in gauges and booster

If 1/4-18NPT connections are desired, the connection manifolds Model Code LEXG-BN rsp. -CN must be used. The connection manifold Model Code LEXG-CN is required for 10 mm piping. The connection manifold Model Code LEXG -BN is required for piping up to 12 mm .

Fig. 7: Connection manifolds
If a display of the control pressure, input signal or supply air pressure is desired for single acting and double acting positioners, the connection manifold 53 with gauges (Model Code LEXG-JN, -KN, -LN, -MN or -NN) can be used.

Fig. 8: Connection manifold with gauges

The positioner can be matched to nearly all operating situations, such as a split range up to 4 ways, very long and very short strokes and angles of rotation of special cams, by means of a total of 5 range springs. The standard range spring fitted is the 420494019 . Other range springs are available (Code FESG-FN, see page 16).

An attachment kit (Model Code EBZG-PN, -NN, -JN, -ZN or -RN) for rotary movement is required for attachment to rotary actuators and rotary armatures.

Fig. 9: Housing of the attachment kit for rotary movement
The Inductive limit switch 57 (Code $\mathrm{R}, \mathrm{T}, \mathrm{U}$) and the limit switch with two microswitches (Code V) in addition enables end position signalling.

Fig. 10: Positioner with limit switches
The position transmitter 4-20 mA 58 (Model Code W) signals the stroke or angle of rotation via a standard electrical signal of 4 to 20 mA .

Fig. 11: Positioner with position transmitter $4-20 \mathrm{~mA}$

2 MOUNTING

2.1 Dimensions

2.1.2 Options

"Built-in limit switch",
Model Code R, T, U, V

"Position transmitter", Model Code W

2.1.3 Additional parts

Connection manifold 1/4-18NPT
with staggered connections, Code LEXG-BN

Booster relay single acting,
Code VKXG-FN

Booster relay single acting with doubled output capacity, Code VKXG-HN

Connection manifold 1/4-18NPT
with connections same level, Code LEXG-CN

Booster relay double acting, Code VKXG-GN

1 Female thread 1/4-18 NPT for supply air 2 Female thread 1/4-18 NPT for input (w)
3 Female thread 1/4-18 NPT for output I (y1)
4 Female thread 1/4-18 NPT for output II (y2)
5 Female thread 1/2-14 NPT for output I (y1)
6 Fixing screws $17 \mathrm{~mm} \mathrm{~A} / \mathrm{F}$

Connection manifold 1/4-18NPT with gauges Code LEXG-JN, -KN, -LN, -MN, -NN
Connection manifold 1/4-18NPT for gauges Code LEXG-RN, -SN, -TN

Connection manifold Code LEXG	60 Gauges for	61 Gauges for	62 Gauges for	Version of action
-JN (-RN*)	without	Output (y)	Supply air	single
-KN (-RN*)	Input (w)	without	Supply air	single
-LN (-RN*)	Input (w)	Output (y)	Supply air	single
-MN (-SN*)	Supply air	Output I (y1)	Output II (y2)	double
-NN (-TN*)	Input (w)	Output I (y1)	Output II (y2)	double

*) Connection manifold for gauges; without gauges

2.2 ATTACHMENT KIT FOR DIAPHRAGM ACTUATORS FOR STROKE MOVEMENTS

2.2.1 Dimensions

Corrier bolt

for attachment to valve stem

2.2.2 Determining the mounting side

Single acting diaphragm actuators

Check whether the actuator is in the safety position required by the process (Does the actuator open or close with spring force?). The mounting side is selected from the table below in accordance with the direction of action and the required direction of movement of the spindle for an increasing input signal.

The arrow indicates the direction of movement of the spindle for an increasing input signal.
The direction of action of the input signal can be set on the changeover plate 50 (see page 31):
$\mathrm{N}=$ normal direction of action (increasing input signal produces increase in control pressure to the actuator)
$\mathrm{U}=$ reverse direction of action
(increasing input signal produces decrease in control pressure to the actuator)

Double acting diaphragm actuators

With double acting positioners the changeover plate 50 (see page 31) always stays in the " N " setting. The assignment of the input signal to the direction of movement of the actuator spindle is determined by the selection of the mounting side for the positioner and the piping of the positioner outputs to the actuator:

If the actuator spindle is to travel out with an increasing input signal, output $y 1$ is connected on the top of the actuator and output y 2 is connected on the bottom.
The positioner is mounted on the right-hand side.
If the actuator spindle is to retract with an increasing input signal, output $y 1$ is connected on the bottom of the actuator and output y2 is connected on the top.
The positioner is mounted on the left-hand side.

The arrow indicates the direction of movement of the spindle with an increasing input signal.

2.2.3 Attachment to diaphragm actuators

The positioner is attached using the attachment kit for diaphragm actuators according to DIN IEC 534-6 on the righthand or left-hand side of the actuator.
a) Screw carrier bolt 14 into the actuator coupling. (see page 8).
b) Screw the attachment plate 20 to the positioner using two M6 socket head screws.
c) Fasten the positioner with attachment plate 20 to the diaphragm actuator.
For FOXBORO ECKARDT-diaphragm actuators with casting yokes:
Fasten the attachment plate 20 using M8 screw to the threaded hole of the casting yoke (see page 8).
This ensures that the feedback lever 9 is horizontal at a 50 \% stroke.
For diaphragm actuators with pillars:
Fasten attachment plate 20 using two U-bolts 21 in such a manner that the feedback lever 9 loosely attached on the shaft 17 of the positioner and the carrier bolt 16 is horizontal at a 50% stroke (see page 8).
d) Set the actuator to a linear position of 0%. Attach the feedback lever 9 on the shaft 17 of the positioner and the carrier bolt 16 in such a manner that the compensating spring 14 is above the carrier bolt 16, when the mounting side is on the right, and below the carrier bolt 16 when the mounting side is on the left (see Fig. 17).
e) Press the stroke factor lever 31 against the stop bolt 30, and create a friction-type connection between the feedback lever 9 and the shaft of the positioner by tightening the Allen screw 15 (A/F 10). See page 31.
f) With single acting diaphragm actuators connect positioner output y 1 to the diaphragm actuator; with double acting diaphragm actuators connect outputs y1 and y2.
g) Connect command variable w (input).
h) Connect supply air of min. 1.4 bar to max. 6 bar, but do not exceed the maximum permissible operating pressure of the diaphragm actuator.
i) Screw on the housing cover in such a way that the air vent of the attached device faces downwards (see mark

Fig. 17: Pillar yoke, mounting side left

2.3 ATTACHMENT KIT FOR ROTARY ACTUATORS

2.3.1 Dimensions

With shaft
(according to VDI/VDE 3845)
Code EBZG-ZN

Detail Z

Housing dimensions
Attachment kit with shaft resp. without flange
Code EBZG-NN

Without flange
Code EBZG-NN, -PN
Housing dimensions
Attachment kit without flange

With flange
Code EBZG-JN

Rotation angle max 120°; torque requirement 14 Nm

Attachment kit for rotary actuators

For attachment of the positioner to rotary actuators or rotary armatures an attachment kit is required. The linear cam enables sensing of rotation angles up to 120°, whilst the equal percentage and the invers equal percentage cams sense rotation angles up to 90° (linear characteristic between 70° and 90°).

2.3.2 Attachment to rotary actuators

a) Remove the transparent cover plate from the housing of the attachment kit 26.
b) Mount the housing of the attachment kit on the rotary actuatoror the armature; use the mounting hardware supplied by the actuator manufacturer if necessary.

Fig. 19: Rotary actuator with attachment kit for rotary actuators
c) Move the actuator into the desired starting position (rotation angle $=0^{\circ}$).
d) Mount the cam 24 in accordance with the direction of rotation of the actuator (see Fig. 20).
The linear cam is fastened to the actuator drive shaft in such a manner that the dimension for x or y (Fig. 16) is 2 mm , whereas in the case of the inverse equal percentage cam the dimension $x \approx 17.5 \mathrm{~mm}$ and the dimension $y \approx 21.5 \mathrm{~mm}$.
In the case of the inverse equal percentage cam the dimension $x \approx 18 \mathrm{~mm}$ and $\mathrm{y} \approx 23 \mathrm{~mm}$.
When employing the equal percentage and the inverse equal percentage cams, the range spring 420493013 supplied in the accessory bag must be installed in the positioner.
A = Mounting position
for actuator
rotation \&
$B=$ Mounting position for actuator rotation \downarrow

equal percentage

invers equal percentage

Fig. 20: Mounting position of the cams

Fig. 21: Rotary actuator with attachment kit for rotary movement and double acting positioner. For direction of rotation see arrow on cam
e) Fasten the feedback lever 9 for the rotary actuator onto the shaft of the positioner 17 as shown in Fig. 22.

Fig. 22: Attaching the feedback lever to the positioner
f) Mount the positioner on the housing of the attachment kit 26. Attach the spring 18 to the feedback lever 9 and the cam follower 19 against the cam (see Fig. 23).

Fig. 23: Attachment of the positioner

Screw the positioner to the housing of the attachment kit (see Fig. 25). With the linear cam and the inverse equal percentage cam check whether the mark 25 points to the centre of the cam follower 19 (see Fig. 20); adjust if necessary.
With the equal percentage cam check whether the cam follower lies directly ahead of the start of the cam lobe; adjust if necessary.
g) Final mounting of the feedback lever 9 on the shaft of the positioner is performed at a stroke of 0%, i. e. a rotation angle of 0°. First loosen the $5 \mathrm{~mm} A / F$ Allen screw of the feedback lever 9 through the hole 29 (see Fig. 24 and 25), then press the stroke factor lever 31 against the stop screw 30 and tighten the Allen screw firmly.
h) With single acting actuators connect positioner output y1 with the actuator; with double acting actuators connect $y 1$ and y 2 with the actuator. Connect the chamber in which the pressure is to built up with an increasing input signal to y 1 .
i) Connect command variable w (input).
k) Connect supply air of min. 1.4 bar to max. 6 bar, but do not exceed the maximum permissible operating pressure of the actuator.

Fig. 24: Tightening the feedback lever

Note!

If the actuator moves to an end position, the mounting position of the cam does not coincide with the direction of rotation of the actuator. In this case install the cam 24 in the reverse position.
I) Affix the red pointer $\mathbf{2 7}$ on the headed screw $\mathbf{2 8}$ in such a manner that 0° is indicated when the rotary actuator is in its starting position $(w=0)$.
m) Attach the transparent cover plate.

2.3.3 Reversing the direction of rotation

Single acting actuator: Move the changeover plate 50 to the "U" setting and reverse the cam 24.
Double acting actuators: Exchange the positioner outputs and reverse the cam (see Fig. 21). The changeover plate 50 remains in the " N " setting!

Fig. 25: Attachment kit for rotary movement and positioner

3 ELECTRICAL CONNECTIONS (of options)

Electrical connections are available for pneumatic positioners with the auxiliary equipment limit switch or position transmitter $4-20 \mathrm{~mA}$.
Upon installation, the installation requirements of DIN VDE 0100 resp. DIN VDE 0800 as well as locally applicable requirements, must be observed.
In addition, the requirements of VDE 0165 must be observed for systems associated with hazardous areas.
Further important instructions are contained in page 29 (Safety requirements, Explosion protection).
Ilf an earth connection or potential equalization is required, the appropriate connections must be set up.
The unit must be operated in a fixed position.
The cable feeds in through a screwed gland Pg 13.5. This is suitable for line diameters of 6 to 12 mm .
The electrical connections are suitable for wire crosssections of up to $2.5 \mathrm{~mm}^{2}$.

3.1 Option "Built-in limit switches"

Connection terminals see page 23.

3.2 Option "Position transmitter"

Model Code W

Position converter

Connection terminals

$\left.\begin{array}{l}\text { K1 (+) } \\ \text { K3 (-) }\end{array}\right\}$ Power supply
$\left.\begin{array}{l}\text { K2 (+) } \\ \text { K3 (-) }\end{array}\right\}$ Test of the output signal without interruption. A low load ampere meter ($\mathrm{Ri} \leq 10 \Omega$) can be used.
$\mathrm{K} 4 \stackrel{\perp}{\equiv}$ Earth connection

3.2.1 Direct power supply

The max. load impedance RLmax is calculated per:

$$
\mathrm{R}_{\mathrm{Bmax}}=\left(\mathrm{U}_{\mathrm{S}}-12 \mathrm{~V}\right) / 0.02 \mathrm{~A}[\mathrm{Ohm}]
$$

Load characteristic for direct supply

3.2.2 Supply with Power Supply Unit

For intrinsically safe applications, FOXBORO ECKARDTPower Supply Units are available.

[^1] see Product Specifications PSS EVE0101 A.

4 COMMISSIONING

Before commisioning pneumatic positioners must be matched to the stroke or rotation angle of the actuator and the input signal range.
The supply air connected should be min. 1.4 bar and max. 6 bar, but should not exceed the maximum operating pressure of the diaphragm actuator.

4.1 Setting the amplification

The amplification and thus the sensitivity of the positioner are set by means of the throttling screw 42. The throttling screw is screwed in right in the factory, i. e. it is set to maximum amplification.
This amplification varies with the supply air pressure, as shown in the following table:

Supply air	Max. amplification	
	Single acting positioner	Double acting positioner
1.4 bar	approx. 150	approx. 100
4 bar	approx. 90	approx. 150
6 bar	approx. 60	approx. 180

The linear amplification is indicated. These values are based on the built-in range spring FES 420494019.
From the basic setting the amplification can be matched to the dynamic requirements of the control system (counterclockwise rotation of the throttling screw 42 results in less amplification).

Note!

The zero must be reset following each change of amplification.
In order to ensure reliable pressure reduction in the actuator, the throttling screw 42 should not be opened beyond the listed maximum values (with 6 bar max. $1 / 4 \mathrm{ro}$). A limiting screw 43 is therefor incorporated.
The basic setting at the factory permits a maximum opening of the throttling screw 42 of approx. 1 turn.

4.2 Setting of zero and stroke

Before commencing settings press the flapper lever 35 several times alternately to the left and right in order to align the flappers correctly.
a) Set the minimum value of command variable w (start of stroke)
b) Turn the zero screw 39 until the actuator just begins to move from its end position.
c) Set the maximum value of command variable w (end of stroke).
d) Turn the stroke factor screw 40 until the actuator precisely reaches its end position.
Recheck the zero and stroke settings.
Note:
When the stop screw 20 is correctly positioned (see 5.1 or. 5.2) and the feedback lever is correctly mounted (see 2.2.3 $\mathrm{d} / \mathrm{e})$ there is no interaction between the adjustments of zero and stroke.

If the stroke cannot be adjusted with the existing spring, the correct spring can be approximately determined in accordance with the following criteria:

There are 5 differently rated springs available for matching to the stroke and input signal range. The particular spring 34 required can be determined precisely from the stroke factor Ux.

4.3 Setting the damping

The air output capacity of the positioner can be reduced by means of the damping throttle 44 (see page 31).
Double acting positioners are equiped with a damping throttle 44 for output y 1 and a damping throttle 45 for output y2.
In its normal setting the damping throttle is approximately flush with the amplifier housing. The air output capacity is reduced by a factor of approximately 2.5 when the damping throttle is turned right in.
A reduction of the air output capacity should only be undertaken for very small actuator volumes, since the control system would otherwise be too sluggish.

4.4 Subdivision of the input range (split range)

If several actuators are to be controlled by the same command variable, and a complete stroke is to be made in only one specific subrange of this command variable at a time, each actuator must be provided with a positioner, on which the zero and stroke range must be set to the desired subrange of the command variable.
In the case of positioners which are attached to FOXBORO ECKARDT valves, 4 -way subdivision is possible with subranges of 0.2 bar.
The range springs required can be selected on the basis of the stroke factor range or the spring graph (see page 16).

If the zero point must be elevated to greater than 0.6 bar as the result of the subdivision of the input range, the setting should be performed as follows:
a) Shut off supply air.
b) Remove tension from the range spring 34 by turning the zero screw 32.
c) Loosen the A/F 10 screw of the feedback lever and turn the stroke factor lever 31 away from the stop screw 30. This applies pretension to the range spring 34 (see Fig. 31). In this position retighten the screw of the feedback lever.
d) Connect supply air.
e) Set the minimum value of command variable w (start of stroke).

Fig. 31: Pretension of the range spring
f) Turn the zero screw 32 until the actuator begins to move away from its end position. If this is not possible, the pretension of the range spring must be increased as described under c).
g) Set the maximum value of command variable w (end of stroke).
h) Turn the stroke factor screw 33 until the actuator reaches its end position precisely.

Note!

At this setting the zero and stroke range are mutually dependent. Settings e) to h) should therefore be repeated as often as necessary until both settings are correct.
Furthermore it should be noted that the deflection of the stroke factor lever 31 from the starting position may not exceed a maximum of 39 degrees, since the stroke factor lever might otherwise touch the housing cover before reaching its end position.

4.5 Determining of the rotation angle factor $\mathrm{U} \varphi$

 In conjunction with the attachment kit for rotary actuators (Code P, M, J, Z, R) the rotation angle factor U_{φ} can be determined as follows:$$
\mathrm{U}_{\varphi}=\frac{\varphi}{\Delta \mathrm{W}}=\frac{\text { Rotation angle }\left[\angle^{\circ}\right]}{\text { Input signal range }[\mathrm{bar}]}
$$

The rotation angle factors U_{φ} of the individual range springs are given in the table on page 16. The rotation angles are also taken into account in the graph of the range springs (see page 16).

4.6 Determination of the stroke factor U_{x}

The stroke factor U_{x} is the ratio of the entire range of the output variable (stroke x) to the entire range of the input variable (command variable w).
For FOXBORO ECKARDT diaphragm actuators PA200 to PA700 / 702 :
$\mathrm{U}_{\mathrm{X}}=\frac{\mathrm{x}}{\Delta \mathrm{w}}=\frac{\text { Stroke in } \mathrm{mm}}{\text { Input signal range in bar }}$
For FOXBORO ECKARDT diaphragm actuator ($1500 \mathrm{~cm}^{2}$) and other manufacturers ($\mathrm{l}_{0}=117.5 \mathrm{~mm}$):
$\mathrm{U}_{\mathrm{X}}=\frac{\mathrm{x}}{\Delta \mathrm{w}} \times \frac{\mathrm{I}_{0}}{\mathrm{I}_{\mathrm{S}}}$
$I_{s}=$ Feedback lever length in mm (for FOXBORO ECKARDT-actuator 1500 cm^{2} : $\mathrm{I}_{\mathrm{s}}=122.5 \mathrm{~mm}$)
$\mathrm{I}_{\mathrm{o}}=$ Standard feedback effective length

The stroke factor can be used to determine for each application whether or with which spring the desired setting can be made.
Five different range springs are available for matching to the stroke and input signal range.

4.6.1 Stroke factor ranges of the range springs

The stroke factor U_{x} determined as described in 4.6 should lie within the ranges of the respective range springs indicated in the following table, as close as possible to the lower value.

	Range spring			Cam ${ }^{1)}$		Stroke factor ranges		Remarks
	Ident No.		Colour	linear	Equal perc. and inverse equal perc.	Stroke factor U_{x}	Stroke range2)	
		old ID		$\max .120^{\circ}$	$\max .90^{\circ}$	$\frac{\mathrm{mm}}{\mathrm{bar}}$	mm	
1	420493013	FES 627/1	yellow	$\begin{gathered} \hline \hline 1.7 \ldots 4.7 \\ (\max .7) \end{gathered}$	$\begin{gathered} \hline 2.4 \ldots 8 \\ (\max .10) \end{gathered}$	$\begin{gathered} 10 \ldots 30 \\ (\max .42) \end{gathered}$	8 ... 34	3)
2	420494019	FES 628/1	green	$\begin{aligned} & 3.5 \ldots 9.5 \\ & (\max .14) \end{aligned}$	$\begin{gathered} 5 \ldots 15 \\ (\max .20) \end{gathered}$	$\begin{aligned} & 22 \ldots 60 \\ & \text { (max. } 84) \end{aligned}$	17 ... 68	built-in
3	502558017	FES 612/1	- without -	$\begin{gathered} 5.8 \ldots 14.5 \\ (\max .21 .75) \end{gathered}$	$\begin{aligned} & 8.2 \ldots .24 \\ & (\max .28) \\ & \hline \end{aligned}$	$\begin{gathered} 35 \ldots 90 \\ (\max .130) \end{gathered}$	$28 . . .105$	3)
4	420496011	FES 715/1	gray	$\begin{gathered} 8.4 \ldots 21.5 \\ (\max .32 .75) \end{gathered}$	$\begin{gathered} 12 \ldots 35 \\ (\max .43) \end{gathered}$	$\begin{gathered} 50 \ldots 140 \\ (\max .190) \end{gathered}$	40 ... 158 4)	3)
5	420495014	FES 629/1	blue	$\begin{aligned} & 11.5 \ldots 27.5 \\ & (\max .41 .5) \end{aligned}$	-	$\begin{gathered} 70 \ldots 180 \\ (\max .250) \end{gathered}$	$55 . . .2004)$	3)

1) For equal percentage and inverse equal percentage cams the rotation angle factors are a function of their corresponding rotation angles.
2) For feedback effective length $I_{s}=117.5 \mathrm{~mm}$ and $\Delta w=0.8 \mathrm{bar}$
3) Included in FESG-FN (Id No. 407083013)
4) Theoretically value

$1 \mathrm{a} \ldots 5 \mathrm{a}=$ minimum stroke range of each spring
$1 \mathrm{~b} . . .5 b=$ maximum available strokes

4.6.2 Characteristics of the range springs

The stroke x_{0} is based on the FOXBORO ECKARDT- standard feedback lever effective length $\mathrm{I}_{0}=117.5 \mathrm{~mm}$.

Fig. 33: Feedback lever
If another length $\left(\mathrm{I}_{\mathrm{s}}\right)$ is used, the actual stroke x_{s} must be converted to the stroke x_{0} :

$$
x_{0}=\frac{117,5 \times x_{\mathrm{s}}}{\mathrm{I}_{\mathrm{s}}}[\mathrm{~mm}]
$$

Selection of measuring spring and setting of span
Determination of suitable spring for split range:
a) Enter desired setpoint value w for travel start in the diagram field.
b) Determine x_{0} if I_{s} unequal 117.5 mm .
c) Enter intersection w / x_{0}.
d) Connect points determined at a) and c). This results in a straight line.
e) If the straight line does not run through the origin, move this parallel here.
f) Use the spring the characteristic line (a) of which is located directly below the presently determined characteristic line.

Example: Split-range-operation

(shown in graph)

Valve 1:

$\mathrm{w}=0.2 \ldots 0.6 \mathrm{bar}$
$x_{s}=30 \mathrm{~mm}$ (stroke range)
$I_{\mathrm{s}}=140 \mathrm{~mm}$

$$
x_{0}=\frac{117,5 \times 30}{140}=25,2 \mathrm{~mm}
$$

Intersection $w=0.6$ bar with $\mathrm{x}_{0}=25.2 \mathrm{~mm} \rightarrow \mathbf{S} 1$
Selected: spring 4 (FES 420496 011, grey), because the characteristic curve, based on the begin of the determined straight line, lies directly beneath of them.

Valve 2:

$\mathrm{w}=0.6 \ldots 1.0 \mathrm{bar}$
$\mathrm{x}_{\mathrm{s}}=50 \mathrm{~mm}$ (stroke range)
$\mathrm{I}_{\mathrm{s}}=140 \mathrm{~mm}$

$$
x_{0}=\frac{117,5 \times 50}{140}=42 \mathrm{~mm}
$$

Intersection w $=1.0$ bar with $\mathrm{x}_{0}=42 \mathrm{~mm} \rightarrow \mathbf{S} 2$
Selected: spring 5 (FES 420495 014, blue), because the characteristic curve, based on the begin of the determined straight line, lies directly beneath of them.

4.7 Manual bypass switch

The single acting pneumatic positioner can also be supplied with a bypass switch 51 (see page 31) if it is intendet for use with actuators with a signal range of 0.2 ... 1 bar.
In the "ON" position the actuating signal of the master controller is supplied via the positioner; in the "OFF" position it is connected direct to the actuator.

Note!

The bypass switch may only be operated in the normal direction of a action (changeover plate 50 in position N , see page 31), i. e. when the "OFF" position is set.
It should also be noted that the stored pressure in the actuator chamber may have a feedback effect on the preceding controllers when the "OFF" position is set, and could overload them. The pressure in the actuator chamber should therefore be reduced accordingly before the changeover. The spring range of the actuator should not exceed the maximum signal value of the master controller, in order to ensure that the valve can open and close fully.

Fig. 34: Bypass circuit

5 MAINTENANCE

5.1 Basic adjustment of the single acting positioner

A basic adjustment is only required when the device has been disassembled or subassemblies have been exchanged. All settings performed in order to match the positioner to the actuator are described in chapter 4 Commissioning, page 14.

The following tools are required for the basic adjustment: 1 screw driver
1 set spanner A/F 7
1 feeler gauge 0.6 mm
2 pressure test gauges 1.6 bar
1 signal generator 0.6 bar
If adjustments are made with the device attached, the feedback lever on the shaft of the positioner must be loosened.
a) Set the changeover plate 50 to " N ".
b) Turn the throttling screw 42 clockwise as far as its stops (maximum amplification).
c) Unhook the range spring 34 from the flapper lever 35 .
d) Check that the flappers 37 are aligned concentrically with the nozzles 36 . If necessary loosen the mounting bolts of the amplifier on the rear of the positioner and align the amplifier accordingly.
e) Press the flapper lever 35 several times alternately to the left and right, so that the ball-guided flappers are parallel to the nozzles.
f) Press the flapper lever 35 to the left. Set the clearance between the right-hand nozzle and the right-hand flapper to 0.6 mm with the aid of a feeler gauge by turning the hexagonal nut $56 \mathrm{~A} / \mathrm{F} 7$. Then secure the nut against further turning.
g) Connect the positioner as shown in the test circuit in Fig. 35. Connect supply air of 1.4 bar.
h) Press the flapper lever 38 to the left. If the output y does not rise to the level of the supply air pressure, either leaks are present or the flapper is not correctly aligned (repeat e)).
i) Hook the range spring 34 onto the flapper lever 35 and connect w ≈ 0.6 bar.
The following procedure must be observed in order to achieve a no-feedback adjustment of the zero and stroke settings:
k) Press the stroke factor lever $\mathbf{3 1}$ against the stop screw 30.
I) Set the stroke factor screw 33 to a high stroke factor (approx. 2 mm before the upper stop).
m) Turn the zero screw 32 until the output pressure $y \approx 0.6 \mathrm{bar}$, and make a note of this value.
n) Set the stroke factor screw 33 to a low stroke factor (approx. 2 mm before the lower stop). The output pressure y may not vary by more than ± 150 mbar as compared with the setting described in $\mathrm{m})$.
o) In case of excessive deviations the stop screw $\mathbf{3 0}$ should be adjusted.
Whenever the stop screw 30 is adjusted, the settings described in I) to n) should be repeated until the deviation is less than ± 150 mbar.
p) Secure the stop screw 30 with sealing paint.

Return the changeover plate 50 to its original position. Reattach the positioner or fasten the feedback lever back onto the shaft of the positioner see chapter 4, page 14.

Fig. 35: Test circuit

5.2 Basic adjustment of the double acting positioner

A basic adjustment is only required when the device has been disassembled or subassemblies have been exchanged. All settings performed in order to match the positioner to the actuator are described in chapter 4 Commissioning, page 14.

The following tools are required for the basic adjustment:
1 screw driver
1 set spanner A/F 7
1 feeler gauge 0.6 mm
3 pressure test gauge (2×6 bar, 1×1.6 bar)
1 signal generator 0.6 bar
If adjustments are made with the device attached, the feedback lever on the shaft of the positioner must be loosened.
a) Set the changeover plate 50 to " N ".
b) Turn the throttling screw 42 clockwise as far as its stops (maximum amplification).
c) Unhook the range spring 34 from the flapper lever 35.
d) Check that the flappers 37 are aligned concentrically with the nozzles 36 . If necessary loosen the mounting bolts of the amplifier on the rear of the positioner and align the amplifier accordingly.
e) Press the flapper lever 35 several times alternately to the left and right, so that the ball-guided flappers are parallel to the nozzles.
f) Press the flapper lever 35 to the left. Set the clearance between the right-hand nozzle and the right-hand flapper to 0.6 mm with the aid of a feeler gauge by turning the hexagonal nut 56 A/F 7 . Then secure the nut against further turning.
g) Connect the positioner as shown in the test circuit in Fig. 36. Connect supply air of 1.4 bar.
h) Press the flapper lever 35 to the left and the right. The pressures y1 and y2 should vary in opposite directions between 0 bar and the supply air pressure.
i) Hook the range spring 34 onto the flapper lever 35 and connect $w \approx 0.6$ bar.
k) Set the zero screw 32 until the pressures y1 and y2 are equal.
I) Set the adjusting screw 47 so that the pressures y 1 and y2 are approx. 4.2 bar (70% of the supply air pressure). If necessary repeat the settings described in k) and I) alternately.
m) Connect supply air of 1.4 bar. Set the zero screw 32 so that the pressures y1 and 2 are equal. They should be approximately 0.7 bar (50% of the supply air pressure). (Check measurement only.)
The following procedure must be observed in order to achieve a no-feedback adjustment of the zero and stroke settings:
n) Press the stroke factor lever 31 against the stop screw 30.
o) Set the stroke factor screw 33 to a high stroke factor (approx. 2 mm before the upper stop).
p) Turn the zero screw 32 until the output pressures y 1 and y2 are equal.
r) Set the stroke factor screw 33 to a low stroke factor (approx. 2 mm before the lower stop). The output pressures y1 and y2 may not vary by more than ± 150 mbar as compared with the setting described in p).
s) In case of excessive deviations the stop screw 30 should be adjusted.
Whenever the stop screw 30 is adjusted, the settings described in o) to r) should be repeated until the deviation is less than ± 150 mbar.
t) Secure the stop screw 30 with sealing paint.

Reattach the positioner or fasten the feedback lever back onto the shaft of the positioner see chapter 4, page 14.

Fig. 36: Test circuit

5.3 Cleaning the throttle

a) Remove the limiting screw 43.
b) Pull the throttling screw 42 down out of the limiting screw.
c) Place the throttling screw 42 in a solvent (e. g. benzene) and blow through it carefully. It is better still to clean it in an ultrasonic bath.
d) Turn the throttling screw 42 right in again as far as its stop (clockwise).
e) Turn the limiting screw 43 right in clockwise as far as its stop, then back again counterclockwise by about half a turn.
f) Secure the limiting screw 43 with sealing paint.

6 REPLACING SUBASSEMBLIES

6.1 Replacing the amplifier

a) Remove the housing cover.
b) Unhook the range spring 34 from the flapper lever 35 .
c) Unscrew and remove the amplifier 40 or dual amplifier 41. The two mounting bolts are accessible from the rear of the positioner.
d) Install a new amplifier. Do not forget the O-rings between the amplifier and the base plate (air baffle). Before tightening the mounting bolts align the amplifier in such a way that the flappers 37 are concentrically aligned with the nozzles 36 .
e) Hook the range spring 34 onto the flapper lever 35 .
f) Perform a basic adjustment (see 5.1 or 5.2).

6.2 Replacing the amplifier diaphragm

 in the single acting positionera) Remove the amplifier (see 6.1)
b) Dismantle the amplifier.

Remove the screw 54 . Remove the two screws 56.
Remove the strip 55 and flapper lever 35.

Fig. 37: Amplifier

When the four screws 63 are removed, the amplifier can be dismantled into the following components and subassemblies:
64 housing block A
65 pipe
66 spring
67 diaphragm disk subassembly
68 amplifier diaphragm
69 housing block B
70 input diaphragm subassembly
71 cover
c) Reassemble the amplifier:

Reassemble the components and subassemblies in the correct position in the sequence specified. Replace faulty parts.
Put housing block A 64 with the open side facing upwards. Insert pipe 65 in the hole in the housing block A. Place spring 66 in position in the diaphragm disk subassembly 67. Insert diaphragm disk subassembly 67 in housing block 64 so that the pipe 65 passes through the holes in the diaphragm disk subassembly 67. Place amplifier diaphragm 68 on the diaphragm disk subassembly 67 (with the projection facing downwards), pipe 65 should be inserted in the hole of the amplifier diaphragm 68.
Place housing block B 69 in its correct position, so that the pipe 65 is inserted in the relevant hole in housing block B 69. Press housing block B 69 against housing block A 64.

Note:

When these two components are pressed together housing block B 69 should be planeparallel with housing block A 64.
If not, why are they misaligned?
(Is pipe 65 in its correct position in the holes of housing block A 64 and housing block B 69 ?)
Insert input diaphragm subassembly 70 in housing block B 69. Install cover 71 in the right way round (threaded holes on the amplifier setting side), and screw the amplifier together.
Tighten the four screws 63 uniformly.
d) Screw on the flapper lever 35 again.
e) Install the amplifier (see 6.1)
f) Perform a basic adjustment (see 5.1)

Fig. 38: Amplifier dismantled

6.3 Replacing the amplifier diaphragm in the double acting positioner

Remove the dual amplifier 54 (see 6.1)

Replace the input diaphragm

a) Remove screw 54 .
b) Remove two screws 56 , the strip 55 and the flapper lever 35.

Fig. 39: Dual amplifier
c) Remove four screws $\mathbf{7 2}$ and the cover 71.
d) Remove and replace the input diaphragm subassembly 70.
e) Reassemble the input diaphragm in the reverse order.
d) Insert the new diaphragm assembly 77 in its correct position in housing block B 78.

Important note:

The pipe 79 passes through the first disk 80 and is inserted in a hole in the second disk 81.
If the two disks 80 and 81 are not absolutely flush when the diaphragm assembly is pressed together by hand, the pipe is not in its correct position in the hole. In this case disk 81 should be turned until the pipe is correctly inserted in the hole.
e) Install housing block A 74 in its correct position and screw on with the four screws 73.
f) Measure the gap between the housing blocks 74 and 78 with the aid of a feeler gauge.
g) The spring washer 75 selected should have a wire diameter which corresponds to the gap measured as described in f), or which is no more than 0.1 mm smaller in diameter.
h) Remove the four screws 73 again and remove housing block A 74.
Install the spring washer 75 selected, replace housing block A 74 in its correct position, and tighten the screws 73 firmly and unformly. Align the spring washer so that it does not project over the edges of the housing blocks 74 and 78.

Reinstall the amplifier (see 6.1) and perform basic adjustment (see 5.2).

Replace the diaphragm assembly

a) Remove four screws 73 and housing block A 74 .
b) Remove spring washer 75 .
c) Through the holes 76 ,the diaphragm assembly 77 can be pressed out of the housing block B 78, for example by means of a small screwdriver. The diaphragm assembly is a self-contained component,

Fig. 39: Dual amplifier dismantled

7 Option "Limit switch"

The limit switches are additonal equipment either installed in the factory or updated. They are constructed either with inductive switches or micro switches and signal exceeding or deceeding of a stroke or rotating movement of actuators.

7.1 Method of operation

Stroke or rotation angles of the actuators are transferred to the control vanes via a deviating mechanism to the control vanes which either dampen an oscillator circuit or switch a mechanical contact depending on the version.
The inductive limit switches are supplied with power via a separately mounted switch amplifier. The current signal is transferred into a switch output.
In the three-wire version an integrated switch amplifier supplies a switch signal; direction of reaction PNP closing function.

Fig. 41: Functional schematic (acc. to DIN 19324 / NAMUR)
We recommend the following switch amplifiers:
Separating switch amplifier with relay output
Pepperl+Fuchs GmbH type numbers:
Normal version
WE 77/Ex2
Safety version
WE 77/Ex-SH-03
For further information see above documentation.

7.4 Start-up

The switching functions may be freely selected and set. The control vanes may be adjusted as desired in order to reach the wanted switching behavior. The illustration here shows the four basic settings and adjacent the respective switch behavior (gray=immersed vane).
The examples are based on the following setting:
Mounting left = feedback lever right; transmission is selected so that at stroke x from 0 to 100% the guidance shaft travels through a rotary angle of 180°.
Illustrated in resting position $x=0 \%$.
2 -wire technique: if control vane is immersed the initiator power circuit becomes high-ohmic.

3 -wire technique: if control vane is immersed the contact is closed against plus.

Micro switch: Contact opens during passing of the control vanes.

7.2 Electrical connection

Grounding conductor connection following installation in the SRP981 - see page 13.

7.3 Arrangement of connection

The connection cable is guided through the cable gland Pg 13.5 (cable diameter $6 . . .12 \mathrm{~mm}$) and connected to the terminal bar (see page 24).
The terminals are tied up as follows:

2-wire technique	3-wire technique	micro switch
Code T, U	Code R	Code V

The terminals are suited for cable cross-sections of up to $2.5 \mathrm{~mm}^{2}$ (fine-strand).

7.5 Setting Limit Values

The switching points are dependent on the setting of the control vanes 83 , on the settings of the probes \boldsymbol{A} and \boldsymbol{B} and on the ratio setting.
To set the control vanes loosen the screw 82 on the drive shaft and align the control vanes in accordance with the illustrations on page 23.
During loosening and/or tightening this screw hold control vanes tightly to avoid damaging pinion and tooth segment.

Adjust the probes as follows:
a) Move the actuator to the position to be signalled
b) Loosen locking screw 86 and adjust the switching points by turning adjustment screws 87 .
c) Then retighten locking screws.

To set the transformation the ratio of the rotation angle of the control vanes can be set continuously by turning the spindle screw 85 of the adapter. Turn clockwise to increase the ratio and counter-clockwide to reduce it.
Screw on housing cover with the air vent facing downwards when the device is mounted.

7.6 Maintenance

No maintenance is required.

7.7 Safety requirements

see page 29.

7.8 Subsequent installation or exchange

For subsequent installation there are kits available in appropriate versions - see PSS EVE0101A. Safety requirements indicated on page 29 are to be absolutely observed!

The kit includes the following parts:
108 Adapter for transferring the rotary movement to the control vane
107 Hexagonal bolts for mounting plate
119 Mounting plate with probes, adjusting devices, terminals
111 Bolts for housing cover
112 Cable gland
112a Screw plug
117 Frame with sealing
 unscrew top screw 104. Install adapter 108 and tighten the screw again. Tighten screws 102 and 104 .
b) Insert two hexagonal bolts 107 ($8 \mathrm{~mm} \mathrm{A/F}$): Release screw 121 , attach gasket to long hexagonal bolt and insert instead of screw 121.
In case of single-acting positioners release screw 122, transfer gasket to short hexagonal post and insert instead of screw 122.
In case of double-acting positioners release screw 123 , transfer gasket to medium length hexagonal post and insert instead of screw 123.

single acting

double acting
c) Screw mounting plate 119 to the two hexagonal bolts 107 with the two screws 110 (if necessary, adjust the adjusting devices so that the right-hand mounting hole is accessible). Be careful to ensure that the driving pin of the adapter engages in the slot in the gear segment.
d) Screw the two bolts 111 into the female threads to secure the housing cover. When the positioner is installed, these will be the female threads in the top left-hand corner and in the bottom right-hand corner.
e) Secure cable gland 112 and screw plug 112a to frame 117 with the enclosed nuts.
Fit the frame with the rubber seal facing the positioner and cable gland 112 at the terminals .
f) Screw on the housing cover with the air vent facing downwards when the device is mounted.

8 Option "EI. Position Transmitter"

The electrical position transmitter is additonal equipment either installed in the factory or up-dated. It converts the stroke or rotary movement of an actuator into an electrical standard signal $4 . . .20 \mathrm{~mA}$.

8.1 Function

The stroke or rotary angle of an actuator are transmitted to the position controller with a built-in electrical position converter via control lever. The angle setting is converted proportionately into a voltage with a potentiometer. This voltage is then converted into the electric standard signal 4 ... 20 mA . Adaption to the stroke of the actuator takes place internally. The start and end of the measuring range are set with trim potentiometers.

8.2 Electrical Connections

Grounding cable connection following installation in the SRP981 - see page 13.

8.3 Arrangement of connection

The cable is inserted through the Pg 13.5 cable gland 112 (suitable for lead diameters $6 . . .12 \mathrm{~mm}$) and is connected at the terminal block 106 .
The terminals are suitable for wire cross-sections of up to $2.5 \mathrm{~mm}^{2}$.
Cable gland 112 and screw plug 112a are interchangeable.

The terminals are connected as follows:
K1 Auxiliary energy (+)
K2 Uninterrupted signal current measurement with a low resistance ampmeter ($\mathrm{Ri} \leq 10$ Ohm)
K3 Auxiliary energy (-)
K4 Protective earth connection
The power supply ($U_{s}=\operatorname{DC} 12 \ldots 36 \mathrm{~V}$) originates from the signal circuit in two wire connection.
The maximum permissible load impedance $R_{B m a x}$ is calculated with the following equation:
$R_{B m a x}=\left(U_{s}-12 \mathrm{~V}\right) / 0,02 \mathrm{~A} \quad[\mathrm{Ohm}]$

$$
\mathrm{U}_{\mathrm{S}}=\text { Supply voltage in } \mathrm{V}
$$

8.4 Maintenance

No maintenance is required.
8.5 Start-up (countinued on next page)

Fig. 49: Adjusting the start and end of the measuring range

8.5 Adjusting the measuring range

Start of measuring range

Bring the actuator to the starting position. With potentiometer $P 4$, adjust the measuring range start 4 mA .

End of measuring range

Bring the actuator to the end position and set potentiometer $P 3$ to the measuring range end value 20 mA .
If you wish to make a greater adjustment to $P 3$, check the setting of $\boldsymbol{P 4}$ again and correct if necessary. Next adjust P3 again.

Adjusting the mechanical zero

(Only necessary if adjustment is not possible as described above.)

Turn potentiometer P4 counterclockwise to the lowest value and set potentiometer P3 to the highest value. Bring the actuator to the starting position.
Undo screw 115. Set the mechanical zero point by turning the hexagon screw 116 with an set spanner A/F 4 to a starting value of between 3.5 and 3.8 mA .
Tighten screw 115 again.
Adjust start and end of measuring range as described above.

8.6 Conversion from normal direction of action in reverse direction of action

Set potentiometer $\boldsymbol{P 4}$ to the lowest value by turning it counterclockwise and set potentiometer P3 to the maximum value.
Swap around connections 113 and 114.

Start of measuring range

Bring the actuator to its end position.
Undo screw 115. Set the machanical zero point to a starting value of between 3.5 and 3.8 mA by turning the hexagon screw 116 with an set spanner A/F 4.
Tighten screw 115 again.
With potentiometer $\mathbf{P 4}$, adjust the measuring range start 4 mA .

End of measuring range

Bring the actuator to the starting position.
Set potentiometer P3 to the measuring range end value 20 mA .
In the event of a greater adjustment to $P 3$, check the setting of $\boldsymbol{P 4}$ again and correct it if necessary, then check the setting of P3 again.

Important in the case of Ex version:

The conversion from "normal" to "reverse" must be certified by a recognized expert or carried out by the manufacturer.

Attachment side, left:
rising
output signal with retracting drive spindle.

Attachment side, right:
rising
output signal with extending drive spindle.

Attachment side, left:
Falling
output signal with retracting drive spindle.

Attachment side, right:
Falling
output signal with extending drive spindle.

8.7 Subsequent installation or exchange

For subsequent installation there are kits available, see PSS EVE0101A. Safety requirements indicated in page 29 are to be absolutely observed!
Kit components:
101 Driver plate for transmitting the rotary motion
105 Support $\varnothing 7 \mathrm{~mm}$ for converter plate
109 Converter plate with 2 fillister head screws 110 and one lock washer 120
111 Support for cover
112 Cable screw connection
112a Screw plug
117 Frame with rubber seal

Adjusting the measuring ranges (see Fig. 49)

- Bring actuator to starting position.
- Connect control lever 9 non-positively with position controller shaft 17.
- Unscrew cover 118 and frame 117.

Turn potentiometer P4 counterclockwise to the lowest value and set potentiometer P3 to the maximum value.

- Remove screw 115.

Set the mechanical zero point to a starting value of between 3.5 and 3.8 mA by turning the hexagon screw 116 with an open-end spanner A/F 4.

- Re-tighten screw 115.

Adjusting the start and end of measuring range see page 27.

Installation:

a) Unscrew lower screw 102 of stroke factor adjustment facility 31.
b) Position driver plate 101, turning screw 102 again and tighten gently.
c) Hold the stroke factor adjustment unit together manually and remove upper screw 104 . Swivel in driver plate and return screw. Tighten screws 102 and 104.
d) Screw in the 2 supports $105 \varnothing 7 \mathrm{~mm}$ as follows: Longer support left, shorter support right.
e) Secure converter plate 109 with screws 110 and a lockwasher 120 (left screw) to the two supports so that the pin on the driver plate 101 engages into the slot on the tooth segment.
f) Screw two supports 111 into the female thread for securing the cover. In installation position, these are the female threads in the top left corner and in the bottom right corner.
g) Secure cable screw connection 112 and screw plug 112a to frame 117 using the nuts supplied. Position the frame so that the rubber seal faces towards the position controller and so that the cable screw connection 112 is next to the terminals.
h) Screw on cover 118 so that the ventilation slot is at the bottom when the unit is attached.

9 SAFETY REQUIREMENTS

9.1 Accident prevention

This device complies with the regulations for the prevention of accidents Power-Driven Work Aids (VBG 5) of 1st October 1985.

9.2 Electrical safety

9.2.1 General requirements

This device with the equipment Inductive limit switches, Model Code R, T, U or Position transmitter 4-20 mA, Model Code W satisfies the conditions for safety class III according to EN 61010-1 (IEC 1010-1).
With the equipment Two micro switches, Model Code V it satisfies the conditions for safety class II, pollution degree 2, overvoltage category II according to EN 61010-1 (IEC 1010-1).

Any work on electrical parts must be done by qualified personnel if any power supply is connected to the instrument.

9.2.2 Connection requirements

The device has to be used for its designated purpose, it has to be connected in accordance with the electrical connection (see page 13). The national requirements need to be considered (for Germany DIN VDE 0100 and DIN VDE 0800).

The device has to be operated with safety extra-low voltage SELV or SELV-E.
Internal safety precautions may be rendered ineffectual if the instrument is not operated in accordance with the Master Instruction.
Limitation of power supplies for fire protection have to be observed due to EN 61010-1, appendix F (rsp. IEC 1010-1).

Devices with position transmitter $4 \ldots 20 \mathrm{~mA}$: For electromagnetic compatibility EMV, the ground connection must be made (CE).

9.2.3 Explosion protection

Only if ordered accordingly, with Inductive limit switches, Model Code T or U or with Position transmitter 4-20 mA, Model Code W,

Technical data for explosion protection see Product Specification PSS EVE0101 A.

For installations in contact with explosive atmospheres, all relevant national regulations and installation conditions must be observed, e. g. in the Federal Republic of Germany ElexV and DIN VDE 0165.

Attention:

When repairing explosion-proof equipment, observe the national regulations.
Use only original spare parts when making repairs. The following applies to the Federal Republic of Germany: Repairs involving parts required for explosion protection must either be carried out by the manufacturer or by authorized personnel and confirmed by certificate.

9.2.4 EMC and CE

Remarks according Electromagnetic compatibility EMC and CE marking see Product Specification PSS EVE0101 A.

10 TROUBLE SHOOTING

Fault	Possible cause	Remedy
Actuator does not react to the applied input signal nor to a change in the input signal	pneumatic connections switched	check connections
	feedback lever loose	tighten feedback lever (see 2.2.3)
	positioner mounted on the wrong side	check mounting side with the table in chapter 2.2.2
	changeover plate in the wrong position	check position with table insection 2.2.2
	amplifier defective	change amplifier (see 6.1)
Output pressure does not attain the full value	supply pressure too low	check supply air
	flappers not parallel to nozzles	align flappers (see 5.1 d, e or $5.2 \mathrm{~d}, \mathrm{e}$)
	pre-throttle in amplifier blocked	clean pre-throttle (see 5.3)
	filter in supply connection blocked	change filter
Actuator runs to the end position	positioner mounted on the wrong side	check mounting side with table in chapter 2.2.2
	feedback lever loose	tighten feedback lever (see 2.2.3)
	pneumatic connections switched (double-acting version)	check connections (see 2.2.2 and 2.2.3)
Unstable behaviour positioner circuit oscillates	amplification too high	reduce amplification (see 4.1)
	gland friction on valve too great	loosen gland slightly or renew
	for piston actuators: static friction on cylinder too great	reduce amplification (see 4.1)
Stroke range cannot be set	range spring unsuitable	change range spring (see 4.5 and 4.6)
	positioner does not exhaust pressure completely	check supply air (max. 6 bar)
		check amplification (see 4.1)
		adjust distance between nozzle and flapper (see 5.1 e, f and 5.2 e, f)

Detail: Nozzles / flappers system

Single acting positioner SRP981

Subject to alterations - reprinting, copying and translation prohibited. Products and publications are normally quoted here without reference to existing patents, registered utility models or trademarks. The lack of any such reference does not justify the assumption that a product or symbol is free.

FOXBORO ECKARDT GmbH
Postfach 500347
D-70333 Stuttgart
Tel. \# 49(0)711 502-0
Fax \# 49(0)711 502-597

[^0]: 1) If the single acting positioner is fitted with a bypass switch 51 , and if this switch is set to the "OFF" position, the input signal w is supplied direct to the actuator, in other words the positioner has no effect.
 2) A booster 52 can be installed in order to increase the air output capacity and reduce the positioning time.
[^1]: 1) For explosionproof instruments observe the electrical limits,
